
2/28/2009

1

Governing Development in

SharePoint

DEV207

Robert L Bogue, MS MOSS MVP

Robert Bogue, MOSS MVP, MCSE,

MCSA: Security, etc.

 Thor Projects

 http://www.thorprojects.com

 Rob.Bogue@ThorProjects.com

 Latest Book: The SharePoint Shepherd’s

Guide for End Users

Agenda

 What can go wrong?

 What is code (and

what isn’t)?

 Big areas

 Core Development

 Checkpoints

 Deployment

What can go wrong?

 Security

 Breaches

 Difficult to maintain

 Stability

 Memory Leaks (Out of

Memory issues)

 Endless loops

 Performance

 Large List

 Iterating

What’s Code (and what isn’t)?

 More than C#/VB.NET

 What about XML?

 Feature.xml

 Manifest.xml

 ONet.xml

 Schema.xml

 What about Master

Pages?

 What about Page

Layouts?

What are the big areas to work

on?
 Core development

 Coding Standards

 Supported/Unsupport

ed APIs

 Checkpoints

 Automated analysis

 Build

Servers/Continuous

Integration

 Deployment

2/28/2009

2

Core Development

Source Control

 Fundamental of

software

development – yet

often overlooked

 Verify by requiring

builds come from

source control, not a

developer

IDisposable

 Every object that

supports IDisposable

must be disposed

every time.

 Use the ‘Using’

statement in C# or a

try/catch/finally to

make sure that

.Dispose() is always

called.

IDisposable - Enumeration

 SharePoint

Enumerators don’t

automatically dispose

objects – put a

.Dispose() at the end

of your foreach loop.

 SPSite will dispose

all SPWebs it creates

but don’t rely on it.

Sidebar: StringBuilder (your

.NET friend)
 Memory

fragmentation is your

enemy (even in 64

bit)

 In .NET each string is

immutable. String

concatenation results

in a new memory

allocation

 Use StringBuilder

Customized Artifacts

 Think: SharePoint

Designer

 Customized pages

don’t upgrade well

 Customized pages

don’t distribute well

 Should you allow

customized artifacts?

2/28/2009

3

Site Definition or Site Template

 Site Definitions are

hard

 Site Templates are

easy

 Use site definitions

only when you must

 If you use a site

definition, build it

from features

Feature Stapling

 Site Definitions can not
be changed once a site
is created from it
(Supportability)

 Feature stapling allows
you to add new
functionality to existing
site defintions

 Don’t allow stapling to
GLOBAL or OOB site
definitions

List Definitions and Content

Types
 Use Content Types

(easy) to define fields

 Use List definitions

(hard) only if you

need to pre-create

views (and can’t use

a list or site template)

Event Receivers and Workflows

 Workflows are long

running, serializable,

and resumable but

heavy and not high

performance

 Event receivers are

not for long running

operations, can

cancel actions, but

are high performance

SPList vs. Database Table

 SPList offers Alerts,
searchability, event
recievers, workflows,
MS Office integration,
etc., but isn’t for large
data sets (> 2K)

 Database tables (not in
the SharePoint DB) are
easy to understand but
don’t offer SharePoint
features

RenderContents vs.

CreateChildControls
 Don’t use

RenderContents – it’s

like doing ASP in

ASP.NET

 CreateChildControls

allows you to modify

the output for mobile

devices, supports

View State, Post

Back, events, etc.

2/28/2009

4

Supportability Deal Breakers

 Just don’t do it

 Don’t directly access

the SharePoint DB

(even just reads)

 Don’t change a site

definition after a site

has been created

Don’t Modify Out of the Box

Files
 Don’t modify out of

the box files

(including site

definitions)

 If you must

remember that you

have to manually

integrate every

service pack, update,

etc.

Branding

 Use Master Pages to
change the fundamental
layout

 Use Themes to apply
basic colors and
graphics

 Make your theme link
(import) from _layouts to
avoid the customization
problem

 Use Page layouts to
rearrange content, hide
navigation, etc.

Strong Naming

 All Assemblies must
be strong named

 You never know when
you’re going to have
to put them in the
GAC

 It doesn’t hurt to do it
now

 You don’t want to
change assembly
references later
(they’re in the DB)

Checkpoints

Automated Checks

 Compiler Warnings

 Visual Studio 2008

Code Analysis/FxCop

 SPDisposeChecker

2/28/2009

5

Build Sever

 All code comes from

source control

 Ensures that all

configuration

dependencies are

documented

 Easy to move to

continuous

integration

Manual Code Reviews

 The most expensive –

and necessary – step

for shared platforms

 Must be an architect

doing the review

 Look for best practices

(i.e. this presentation)

 Look for infrastructure

issues (i.e. not in this

presentation)

Load Testing

 At the very least, try

to break it

(codeplex.com/???)

 Invest in real load

testing for high risk

projects

 Load testing needs to

be done against a

representative data

sample

User Acceptance Testing

 Make the users sign

off on the solution –

every time

 Ensure that the test

matches the

requirements, design

points, or features of

the system

Deployment

SharePoint Solutions (WSP)

 Only allow WSPs for

deployment – no

manual file copies

 Think MSI for

SharePoint

2/28/2009

6

Global Assembly Cache or BIN

 Some things must be
in the GAC (Event
Receivers, Feature
Receivers, Workflow
DLLs, etc.)

 In BIN require CAS
policies (don’t turn
CAS off)

 In an organization the
requirement for BIN is
normally not worth it.

Web.Config Changes

 Only if required

 Don’t use the API to

do them

 No application

settings (too hard to

manage) – there are

better places for

application settings

Smoke Tests

 Quick tests that the

infrastructure team

can use to ensure

that the package /

solution deployed

correctly

Migration Strategies

 Code moves from
developer workstations
forward through test
and into production.

 Content (including
configuration) move
from production
through test and if
necessary into
developer
workstations.

Say What?

 Prioritize

 Evaluate risks

 Educate don’t

legislate

 Develop strong large

scale ASP.NET skills

Thank you for attending!

Post conference DVD with all slide decks

Sponsored by

